

A Statistical Theory of Overfitting for Imbalanced Classification

Jingyang Lyu*, Kangjie Zhou†, Yiqiao Zhong*

*Department of Statistics, University of Wisconsin–Madison, †Department of Statistics, Columbia University

Challenge in Imbalanced Classification

Training data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} P_{\boldsymbol{x},y}$. Features $\boldsymbol{x}_i \in \mathbb{R}^d$. For binary labels $y_i \in \{\pm 1\}$.

Class imbalance. $\mathbb{P}(y_i = +1) < \mathbb{P}(y_i = -1)$. (WLOG, assume "+1" is minority)

Challenges of high dimensions: a brief summary of high dimensional statistical theory:

	Low dimensions	High dimensions		
Parameter estimation	$\left\langle \frac{\widehat{\boldsymbol{\beta}}}{\ \widehat{\boldsymbol{\beta}}\ }, \frac{\boldsymbol{\beta}}{\ \boldsymbol{\beta}\ } \right\rangle \approx 1$	$\left\langle \frac{\widehat{\boldsymbol{\beta}}}{\ \widehat{\boldsymbol{\beta}}\ }, \frac{\boldsymbol{\beta}}{\ \boldsymbol{\beta}\ } \right\rangle < 1$		
Generalization	Training error ≈ Test error	Training error < Test error		
Distribution of logits	1D projection of $P_{m{x}}$	Skewed/distorted 1D projection of $P_{m{x}}$		

Challenges of data imbalance: minority classes have poor training/test errors, classical theory and finite-sample correction fail in high dimensions, the practice is heuristic-driven and ad hoc...

Key Questions

- [Q1]. Mathematically characterize overfitting in high-dim imbalanced classification?
- [Q2]. What are the adverse effects of overfitting, particularly on the minority class?
- [Q3]. What are the consequences for uncertainty quantification, such as calibration?

Setup of Theory

Theoretical tools: consider a two-component Gaussian mixture model (2-GMM)

Minority:
$$\mathbb{P}(y_i = +1) = \pi$$
, $2 \boldsymbol{x}_i | y_i \sim \mathsf{N}(y_i \boldsymbol{\mu}, \mathbf{I}_d)$. (1) Majority: $\mathbb{P}(y_i = -1) = 1 - \pi$,

Focus on linear classifier $\widehat{y}(\boldsymbol{x}) = 2\mathbb{I}\{\widehat{f}(\boldsymbol{x}) > 0\} - 1$ with $\widehat{f}(\boldsymbol{x}) = \langle \boldsymbol{x}, \widehat{\boldsymbol{\beta}} \rangle + \widehat{\beta}_0$, where $\widehat{\boldsymbol{\beta}}$, $\widehat{\beta}_0$ are estimated by two standard approaches: (generalized) logistic regression and support vector machines (SVMs). $(\ell(x))$ is strictly convex decreasing, including $\log(1 + e^{-x})$.)

logistic regression:
$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0 \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \ell(y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0)),$$
 (2a)

SVM: maximize κ , $\beta \in \mathbb{R}^d$, $\beta_0, \kappa \in \mathbb{R}$

(max-margin classifier) subject to $y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \ge \kappa, \ \forall i \in [n], \ \|\boldsymbol{\beta}\|_2 \le 1.$

These two classifiers are closely related by **inductive bias** on separable data. Our theory can also be extended to multiple classes and non-isotropic covariance.

Characterizing Overfitting via Empirical Logit Distribution

Empirical logit distribution (ELD), or training logit distribution is defined as the empirical distribution of label-logit pairs in the training set. **Testing logit distribution** (**TLD**) is defined as the distribution of the label-logit pair for a test data point.

$$\mathsf{ELD:} \ \ \widehat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(y_i,\widehat{f}(\boldsymbol{x}_i))}, \quad \mathsf{TLD:} \ \ \widehat{\nu}_n^{\mathrm{test}} = \mathsf{Law} \left(y_{\mathrm{test}}, \widehat{f}(\boldsymbol{x}_{\mathrm{test}}) \right), \tag{3}$$

Let δ_a be delta measure supported at a, and Law be the distribution of random variables/vectors.

The **discrepancy** between train/test accuracies is known as **overfitting**, which can be analyzed via ELD and TLD. For separable data, see simulation in Figure 2 (2-GMM) and real-data examples in Figure 3 (pretrained neural network).

Takeaway: overfitting = "truncation". (for non-separable data: "shrinking/skewing" effect)

Figure 2. Empirical logit distribution (ELD) and testing logit distribution (TLD). We train a maxmargin classifier (SVM) \hat{f} on synthetic data from a 2-component Gaussian mixture model. Colors indicate labels y_i and x-axis indicates logits $\hat{f}(x_i)$. ELD for both classes: the rectified Gaussian distribution (histogram). TLD for both classes: Gaussian distribution (curve). Overfitting effect: The density areas below the dotted curves are overlapping in TLD \Rightarrow test errors > 0; but they are "pushed" to respective margin boundaries in ELD \Rightarrow separability and training errors = 0.

Figure 3. **ELD & TLD for real data**. **Left: IFNB single-cell** RNA-seq dataset (tabular data). **Middle: CIFAR-10** preprocessed by the pretrained **ResNet-18** for feature extraction (image data). **Right: IMDb** movie review preprocessed by **BERT** base model (110M) for feature extraction (text data).

Theoretical results: variational characterization of ELD vs. TLD

Let $(\widehat{\boldsymbol{\beta}}, \widehat{\beta}_0, \widehat{\kappa})$ be trained from (2b), where $\widehat{\kappa}$ is the **margin**. Denote $\widehat{\rho} := \langle \frac{\widehat{\boldsymbol{\beta}}}{\|\widehat{\boldsymbol{\beta}}\|}, \frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|} \rangle$. On a test point $(\boldsymbol{x}_{\text{test}}, y_{\text{test}}) \sim P_{\boldsymbol{x},y}$, we consider the minority and majority errors

$$\operatorname{Err}_{+} := \mathbb{P}\left(\widehat{f}(\boldsymbol{x}_{\text{test}}) \le 0 \mid y_{\text{test}} = +1\right), \qquad \operatorname{Err}_{-} := \mathbb{P}\left(\widehat{f}(\boldsymbol{x}_{\text{test}}) > 0 \mid y_{\text{test}} = -1\right).$$
 (4)

Theorem (Separable data). Consider 2-GMM with $n/d \to \delta \in (0, \infty)$ as $n, d \to \infty$. There is a critical threshold $\delta_c = \delta_c(\pi, \|\boldsymbol{\mu}\|)$, such that if $\delta < \delta_c$, as $n, d \to \infty$:

- a. Phase transition. \mathbb{P} {training set is linearly separable} $\rightarrow 1$.
- b. Parameter convergence. $(\widehat{\rho}, \widehat{\beta_0}, \widehat{\kappa}) \xrightarrow{P} (\rho^*, \beta_0^*, \kappa^*)$, where $(\rho^*, \beta_0^*, \kappa^*)$ is unique optimal solution to the following variational problem: (we have $\rho^* > 0$, $\beta_0^* < 0$)

 $\max_{\rho \in [-1,1], \beta_0 \in \mathbb{R}, \kappa > 0, \xi \in \mathcal{L}^2} \kappa, \text{ s.t. } \rho \| \boldsymbol{\mu} \| + G + Y \beta_0 + \sqrt{1 - \rho^2} \boldsymbol{\xi} \ge \kappa, \quad \mathbb{E}[\boldsymbol{\xi}^2] \le 1/\delta.$ (5)

- (Let \mathcal{L}^2 denote all square integrable random variables in $(\Omega, \mathcal{F}, \mathbb{P})$, and $(Y, G) \sim P_y \times \mathbf{N}(0, 1)$ where $P_y = \mathbf{Law}(y_i)$. Note that ξ is an unknown random variable (function) to be optimized.)
- c. Asymptotic errors. $\operatorname{Err}_{\pm} \to \Phi\left(-\rho^* \|\boldsymbol{\mu}\| \mp \beta_0^*\right)$. $(\Phi(t) = \mathbb{P}(\mathsf{N}(0,1) \leq t))$
- d. **ELD convergence.** The empirical (training) logit distribution $\widehat{\nu}_n$ has limit ν_* : $W_2(\widehat{\nu}_n, \nu_*) \stackrel{\mathrm{p}}{\to} 0$, where $\nu_* := \operatorname{Law} \left(Y, Y \max\{\kappa^*, \rho^* || \boldsymbol{\mu} || + G + Y \beta_0^* \} \right)$.

TLD convergence. The testing logit distribution $\widehat{\nu}_n^{\text{test}}$ has limit ν_*^{test} :

 $\widehat{\nu}_n^{\mathrm{test}} \xrightarrow{w} \nu_*^{\mathrm{test}}, \qquad \text{where } \nu_*^{\mathrm{test}} := \mathrm{Law}\left(Y, Y(\rho^* \| \boldsymbol{\mu} \| + G + Y\beta_0^*)\right).$

Rebalancing margin is crucial

Mainstay: take a hyperparameter $\tau>0$ and consider the margin-rebalanced SVM

maximize κ , subject to $\widetilde{y}_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \ge \kappa$, $\forall i \in [n], \|\boldsymbol{\beta}\| \le 1$, (6) $\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0, \kappa \in \mathbb{R}$

where $\tilde{y}_i = \tau^{-1}$ if $y_i = +1$, otherwise $\tilde{y}_i = -1$. This **shifts the decision boundary** as shown in Figure 1. For imbalanced classification, it is common to consider the **balanced error** $\text{Err}_b := (\text{Err}_+ + \text{Err}_-)/2$. We conduct analysis under two regimes:

(i) proportional regime, where $n/d \to \delta \in (0, \infty)$ as $n, d \to \infty$. Denote Err_+^* , Err_-^* , Err_b^* as the limits of Err_+ , Err_- , Err_b as $n \to \infty$, respectively.

Proposition (Optimal τ in proportional regime). Define the optimal margin ratio which minimizes the asymptotic balanced error as $\tau^{\rm opt} := \arg\min_{\tau} {\rm Err}_{\rm b}^*$. When $\tau = \tau^{\rm opt} > 0$, we have $\beta_0^* = 0$, ${\rm Err}_+^* = {\rm Err}_-^* = {\rm Err}_{\rm b}^*$. (roughly speaking, $\tau^{\rm opt} \simeq \sqrt{1/\pi}$)

A critical observation is that, changing τ only has an effect on $\widehat{\beta}_0$ but not $\widehat{\beta}$. When $\tau = \tau^{\mathrm{opt}}$, we have **monotone trends** of the errors, see summary in Table 1.

(ii) high imbalance regime, in the sense $\pi \propto d^{-a}$, $\|\mu\|^2 \propto d^b$, $n \propto d^{c+1}$ as $d \to \infty$.

Figure 4. Phase transition in high imbalance regime. 2-GMM simulation under different settings of parameters (a,c) and $\tau=d^r$ (b=0.3). Left: minority accuracy is (i) high for any τ under high signal, (ii) high for $\tau\gg d^{(a-b-c)/2}$ under moderate signal, but (iii) low for any τ under low signal. Right: majority accuracy is close to 1 under high/moderate signal as long as τ is not too large.

Theorem (High imbalance). Consider 2-GMM as $d \to \infty$. Suppose a - c < 1.

- (i) **High signal**: a-c < b. If take $1 \le \tau_d \ll d^{b/2}$, then $\operatorname{Err}_+ = o(1)$ and $\operatorname{Err}_- = o(1)$.
- (ii) Moderate signal: b < a c < 2b. If $d^{a-b-c} \ll \tau_d \ll d^{(a-c)/2}$, then $\operatorname{Err}_+ = o(1)$ and $\operatorname{Err}_- = o(1)$. If naively take $\tau_d \approx 1$, then $\operatorname{Err}_+ = 1 o(1)$ and $\operatorname{Err}_- = o(1)$.
- (iii) Low signal: a-c>2b. For any τ_d , we have $\operatorname{Err}_b \geq \frac{1}{2} o(1)$.

Consequences for confidence estimation and calibration

Confidence: prediction probability, i.e., $\widehat{p}(\boldsymbol{x}) := \sigma(\widehat{f}(\boldsymbol{x}))$ where $\sigma(t) = (1 + e^{-t})^{-1}$. **Calibration:** quantity uncertainty, measure faithfulness of prediction probabilities.

 $\widehat{p}_0(\boldsymbol{x}) := \mathbb{P}(y = 1 \mid \widehat{p}(\boldsymbol{x})), p^*(\boldsymbol{x}) := \mathbb{P}(y = 1 \mid \boldsymbol{x}).$ Some popular miscalibration metrics: calibration error $\mathrm{CalErr}(\widehat{p}) := \mathbb{E}[(\widehat{p}(\boldsymbol{x}) - \widehat{p}_0(\boldsymbol{x}))^2],$ mean squared error $\mathrm{MSE}(\widehat{p}) := \mathbb{E}[(\mathbb{1}_{y=1} - \widehat{p}(\boldsymbol{x}))^2],$ and confidence estimation error $\mathrm{ConfErr}(\widehat{p}) := \mathbb{E}[(\widehat{p}(\boldsymbol{x}) - p^*(\boldsymbol{x}))^2].$

Figure 5. **Reliability diagrams: imbalance worsens calibration**. In 2-GMM simulations, we train SVMs and obtain confidence $\widehat{p}(\boldsymbol{x})$. For each p (x-axis), we calculate $\mathbb{P}(y=1 | \widehat{p}(\boldsymbol{x})=p)$ (y-axis) based on a test set. As imbalance increases (smaller π), the classifier becomes more miscalibrated.

Theoretical results:	Err ₊ , Err ₋ , Err _b	CalErr*	MSE*	ConfErr
imbalance ratio $\pi \uparrow$	\		\downarrow	\
signal strength $\ \boldsymbol{\mu}\ _2 \uparrow$	1	↓	+	
aspect ratio $n/d \to \delta \uparrow$	\	↓	\downarrow	↓

Table 1. Monotonicity of test errors and miscalibration metrics on model parameters.