A Statistical Theory of Overfitting for Imbalanced Classification
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Challenge in Imbalanced Classification
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Class imbalance. P(y; = +1) < P(y; = —1). (WLOG, assume “+1" is minority)

Challenges of high dimensions: a brief summary of high dimensional statistical theory:

Low dimensions High dimensions

3 B8\ 3 B
<HB||’ Hﬂn> ~ 1 <||B||’ Hﬂn> <1

Training error = Test error Training error < Test error
Skewed/distorted 1D projection of P,

Parameter estimation

Generalization

Distribution of logits 1D projection of P,

Challenges of data imbalance: minority classes have poor training/test errors, classical theory
and finite-sample correction fail in high dimensions, the practice is heuristic-driven and ad hoc...

Key Questions

Q1] . Mathematically characterize overfitting in high-dim imbalanced classification ?
Q2] . What are the adverse effects of overfitting, particularly on the minority class ?
Q3] . What are the consequences for uncertainty quantification, such as calibration ?

Setup of Theory

Theoretical tools: consider a two-component Gaussian mixture model (2-GMM)

Minority: P(y; =+1) =7
@ Majority: P(y; = —1) =1 —, 2 @iy (Wit L) )
Focus on linear classifier y(x) = 21{f(z) > 0} — L with f(x) = (x, B)+ 3y, where S,
By are estimated by two standard approaches: (generalized) logistic regression and
support vector machines (SVMs). (¢(z) is strictly convex decreasing, including log(1 + e~*).)

LT oyl BY + Bo)). 22)

logistic regression: minimize —
,BE]Rd BoeR n 1

n

SVM: maximize &,
BeR, By,kER (Zb)
(max-margin classifier) subject to y;((xi, B) + Bo) > K, Vie [n], ||B|, <1

These two classifiers are closely related by inductive bias on separable data. Our
theory can also be extended to multiple classes and non-isotropic covariance.

Characterizing Overfitting via Empirical Logit Distribution

Empirical logit distribution (ELD), or training logit distribution is defined as the em-
pirical distribution of label-logit pairs in the training set. Testing logit distribution
(TLD) is defined as the distribution of the label-logit pair for a test data point.

ELD: yn_—z(s Pz

Let 9, be delta measure Supported at a, and Law be the distribution of random variables/vectors.

AN

TI—D /\test = Law (ytesta f(wtest))a (3)

The discrepancy between train/test accuracies is known as overfitting, which can
be analyzed via ELD and TLD. For separable data, see simulation in Figure 2 (2-
GMM) and real-data examples in Figure 3 (pretrained neural network).

Takeaway: overfitting = “truncation”. (for non-separable data: “shrinking/skewing” effect)

Github: https.//github.com/jlyus5/Imbalanced_Classification
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Figure 2. Empirical logit distribution (ELD) and testing logit distribution (TLD). We train a max-
margin classifier (SVM) f on synthetic data from a 2-component Gaussian mixture model. Colors
indicate labels y; and x-axis indicates logits f(x;). ELD for both classes: the rectified Gaussian
distribution (histogram). TLD for both classes: Gaussian distribution (curve). Overfitting effect:
The density areas below the dotted curves are overlapping in TLD = test errors > 0; but they
are “pushed” to respective margin boundaries in ELD = separability and training errors = 0.
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Figure 3. ELD & TLD for real data. Left: IFNB single-cell RNA-seq dataset (tabular data). Middle:
CIFAR-10 preprocessed by the pretrained ResNet-18 for feature extraction (image data). Right:
IMDb movie review preprocessed by BERT base model (110M) for feature extraction (text data).

Theoretical results: variational characterization of ELD vs. TLD

Let (B, By, R) be trained from (2b), where % is the margin. Denote 5 := <§”, HZH>'

On a test point (est, Yrest) ~ Pay, We consider the minority and majority errors
Erl"+ =P (f(mtest) S 0 { Ytest — —I—l), Err_ =P (f(mtest) > () ‘ Ytest — _1) (4)

Theorem (Separable data). Consider 2-GMM with n/d — 6 € (0, 00) as n,d —
oo. Thereis a critical threshold 6. = d.(, ), such thatif < 4., as n,d — oo:

a. Phase transition. IP’{trammg set is Imearly separable} — 1.

b. Parameter convergence. (p, 50, R) = (p*, B, k%), where (p*, 5%, %) is unique
optimal solution to the following variational problem:  (we have p* > 0, 5 < 0)

k, stopllll+G+Y Bo+ /1 —p% >k, E[E7] <1/6. (5)

maximize
p€[—1,1],60€R,£>0,£€ L?

(Let £* denote all square integrable random variables in (2, F,P), and (Y, G) ~ P, x N(0, 1)
where P, = Law(y;). Note that £ is an unknown random variable (function) to be optimized.)

c. Asymptotic errors. Erry — & (—p*||p|| F 57). (®(t) = P(N(0,1) < t))
d. ELD convergence. The empirical (training) logit distribution 7,, has limit v,:
Wa(Dy, vs) = 0, where v, := Law (Y, Y max{x*, p*|p|| + G+ Y 5;}).
TLD convergence. The testing logit distribution 7'*" has limit v

/\test test

N where v, .= Law (Y, Y (p*||p]| + G + Y 37)).

Rebalancing margin is crucial

Mainstay: take a hyperparameter = > 0 and consider the margin-rebalanced SVM
subject to  yi({xs, B) +Bo) > K, Yie[n], [B] <1, (6)

maximize K,
BERCZ 50,/161&

where y; = 71 if y; = +1, otherwise y; = —1. This shifts the decision boundary
as shown in Figure 1. For imbalanced classification, it is common to consider the
balanced error Erry, .= (Err, + Err_)/2. We conduct analysis under two regimes:
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(i) proportional regime, where n/d — 6 € (0,00) as n,d — oo. Denote Err’, Err”,
Erry as the limits of Err, Err_, Err, as n — oo, respectively.

Proposition (Optimal 7 in proportional regime). Define the optimal margin ratio
which minimizes the asymptotic balanced error as 7°P" := arg min_Err;. When

T =7P >0, we have G} =0, Err’, = Err® = Erry. (roughly speaking, 7" =< /1/m)

A critical observation is that, changing 7 only has an effect on B\o but not B When
T = 7' we have monotone trends of the errors, see summary in Table 1.

(ii) high imbalance regime, in the sense m o< d7¢, ‘o d’ n o< dT as d — oo.
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Figure 4. Phase transition in high imbalance regime. 2-GMM simulation under different settings
of parameters (a,c) and 7 = d" (b = 0.3). Left: minority accuracy is (i) high for any = under high
signal, (i) high for 7 > d@=0=9/2 ynder moderate signal, but (iii) low for any 7 under low signal.
Right: majority accuracy is close to 1 under high/moderate signal as long as 7 is not too large.

Theorem (High imbalance). Consider 2-GMM as d — oco. Suppose a — ¢ < 1.
(i) High signal: a —c < b. If take 1 < 75 < d”/?, then Err,. = o(1) and Err_ = o(1).

(i) Moderate signal: b < a — ¢ < 2b. If d* "¢ <« 75 < d\=9/2 then Err,. = o(1)
and Err_ = o(1). If naively take 7; < 1, then Err, =1 — o(1) and Err_ = o(1).

(iii) Low signal: a — ¢ > 2b. For any 74, we have Err, > 1 — o(1).

Consequences for confidence estimation and calibration

P

Confidence: prediction probability, i.e., p(x) := o(f(x)) where o(t) = (1 + e 1)L
Calibration: quantity uncertainty, measure faithfulness of prediction probabilities.

polx) =Py =1|pla)),p*(x) =Py =1]x). Some popular miscalibration metrics:
calibration error CalErr(p) := E[(p(x) — po(x))?], mean squared error MSE(p) :=
E[(1,-1 — p(«))?], and confidence estimation error ConfErr(p) := E[(p(x) — p'(x))?].
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Figure 5. Reliability diagrams: imbalance worsens calibration. In 2-GMM simulations, we train
SVMs and obtain confidence p(a). For each p (z-axis), we calculate P(y = 1| p(x) = p) (y-axis)
based on a test set. As imbalance increases (smaller 7), the classifier becomes more miscalibrated.

Theoretical results: | Err’y, Err”, Errpy | CalErr™ MSE® ConfErr”

Imbalance ratio © 1 1 1 )

signal strength || |5 T l
aspect ration/d — 0 1 l
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Table 1. Monotonicity of test errors and miscalibration metrics on model parameters.
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