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Challenge in Imbalanced Classification

Training data {(xi, yi)}n
i=1

i.i.d.∼ Px,y. Features xi ∈ Rd. For binary labels yi ∈ {±1}.

Class imbalance. P(yi = +1) < P(yi = −1). (WLOG, assume “+1” is minority)

Challenges of high dimensions: a brief summary of high dimensional statistical theory:

Low dimensions High dimensions

Parameter estimation
〈
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‖β̂‖
, β

‖β‖

〉
≈ 1

〈
β̂

‖β̂‖
, β

‖β‖

〉
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Generalization Training error ≈ Test error Training error < Test error

Distribution of logits 1D projection of Px Skewed/distorted 1D projection of Px

Challenges of data imbalance: minority classes have poor training/test errors, classical theory

and finite-sample correction fail in high dimensions, the practice is heuristic-driven and ad hoc...

Key Questions
[Q1]. Mathematically characterize overfitting in high-dim imbalanced classification ?

[Q2]. What are the adverse effects of overfitting, particularly on the minority class ?

[Q3]. What are the consequences for uncertainty quantification, such as calibration ?

Setup of Theory

Theoretical tools: consider a two-component Gaussian mixture model (2-GMM)

1
Minority: P(yi = +1) = π,

Majority: P(yi = −1) = 1 − π,
2 xi | yi ∼ N(yiµ, Id). (1)

Focus on linear classifier ŷ(x) = 21{f̂ (x) > 0}−1with f̂ (x) = 〈x, β̂〉+ β̂0, where β̂,

β̂0 are estimated by two standard approaches: (generalized) logistic regression and

support vector machines (SVMs). (`(x) is strictly convex decreasing, including log(1 + e−x).)

logistic regression: minimize
β∈Rd,β0∈R

1
n

n∑
i=1

`
(
yi(〈xi, β〉 + β0)

)
, (2a)

SVM: maximize
β∈Rd, β0,κ∈R

κ,

(max-margin classifier) subject to yi(〈xi, β〉 + β0) ≥ κ, ∀ i ∈ [n], ‖β‖2 ≤ 1.
(2b)

These two classifiers are closely related by inductive bias on separable data. Our

theory can also be extended to multiple classes and non-isotropic covariance.

Characterizing Overfitting via Empirical Logit Distribution

Empirical logit distribution (ELD), or training logit distribution is defined as the em-

pirical distribution of label-logit pairs in the training set. Testing logit distribution

(TLD) is defined as the distribution of the label-logit pair for a test data point.

ELD: ν̂n = 1
n

n∑
i=1

δ(yi,f̂ (xi)), TLD: ν̂test
n = Law

(
ytest, f̂ (xtest)

)
, (3)

Let δa be delta measure supported at a, and Law be the distribution of random variables/vectors.

The discrepancy between train/test accuracies is known as overfitting, which can

be analyzed via ELD and TLD. For separable data, see simulation in Figure 2 (2-

GMM) and real-data examples in Figure 3 (pretrained neural network).

Takeaway: overfitting = “truncation”. (for non-separable data: “shrinking/skewing” effect)
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Figure 1. Margin-rebalanced SVM.

Figure 2. Empirical logit distribution (ELD) and testing logit distribution (TLD). We train a max-

margin classifier (SVM) f̂ on synthetic data from a 2-component Gaussian mixture model. Colors

indicate labels yi and x-axis indicates logits f̂ (xi). ELD for both classes: the rectified Gaussian

distribution (histogram). TLD for both classes: Gaussian distribution (curve). Overfitting effect:

The density areas below the dotted curves are overlapping in TLD ⇒ test errors > 0; but they
are “pushed” to respective margin boundaries in ELD ⇒ separability and training errors = 0.
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Figure 3. ELD & TLD for real data. Left: IFNB single-cell RNA-seq dataset (tabular data). Middle:

CIFAR-10 preprocessed by the pretrained ResNet-18 for feature extraction (image data). Right:

IMDb movie review preprocessed by BERT base model (110M) for feature extraction (text data).

Theoretical results: variational characterization of ELD vs. TLD

Let (β̂, β̂0, κ̂) be trained from (2b), where κ̂ is the margin. Denote ρ̂ :=
〈

β̂

‖β̂‖
, µ

‖µ‖
〉
.

On a test point (xtest, ytest) ∼ Px,y, we consider the minority and majority errors

Err+ := P
(
f̂ (xtest) ≤ 0

∣∣ ytest = +1
)
, Err− := P

(
f̂ (xtest) > 0

∣∣ ytest = −1
)
. (4)

Theorem (Separable data). Consider 2-GMM with n/d → δ ∈ (0, ∞) as n, d →
∞. There is a critical threshold δc = δc(π, ‖µ‖), such that if δ < δc, as n, d → ∞:

a. Phase transition. P {training set is linearly separable} → 1.
b. Parameter convergence. (ρ̂, β̂0, κ̂) p−→ (ρ∗, β∗

0 , κ∗), where (ρ∗, β∗
0 , κ∗) is unique

optimal solution to the following variational problem: (we have ρ∗ > 0, β∗
0 < 0)

maximize
ρ∈[−1,1],β0∈R,κ>0,ξ∈L2

κ, s.t. ρ ‖µ‖+G+Y β0 +
√

1 − ρ2ξ ≥ κ, E[ξ2] ≤ 1/δ. (5)

(Let L2 denote all square integrable random variables in (Ω, F ,P), and (Y, G) ∼ Py × N(0, 1)
where Py = Law(yi). Note that ξ is an unknown random variable (function) to be optimized.)

c. Asymptotic errors. Err± → Φ (−ρ∗‖µ‖ ∓ β∗
0). (Φ(t) = P(N(0, 1) ≤ t))

d. ELD convergence. The empirical (training) logit distribution ν̂n has limit ν∗:

W2(ν̂n, ν∗)
p−→ 0, where ν∗ := Law

(
Y, Y max{κ∗, ρ∗‖µ‖ + G + Y β∗

0}
)
.

TLD convergence. The testing logit distribution ν̂test
n has limit νtest

∗ :

ν̂test
n

w−→ νtest
∗ , where νtest

∗ := Law
(
Y, Y (ρ∗‖µ‖ + G + Y β∗

0)
)
.

Rebalancing margin is crucial

Mainstay: take a hyperparameter τ > 0 and consider themargin-rebalanced SVM

maximize
β∈Rd, β0,κ∈R

κ, subject to ỹi(〈xi, β〉 + β0) ≥ κ, ∀ i ∈ [n], ‖β‖ ≤ 1, (6)

where ỹi = τ−1 if yi = +1, otherwise ỹi = −1. This shifts the decision boundary

as shown in Figure 1. For imbalanced classification, it is common to consider the

balanced error Errb := (Err+ + Err−)/2. We conduct analysis under two regimes:

(i) proportional regime, where n/d → δ ∈ (0, ∞) as n, d → ∞. Denote Err∗
+, Err∗

−,

Err∗
b as the limits of Err+, Err−, Errb as n → ∞, respectively.

Proposition (Optimal τ in proportional regime). Define the optimal margin ratio

which minimizes the asymptotic balanced error as τ opt := arg minτ Err∗
b. When

τ = τ opt > 0, we have β∗
0 = 0, Err∗

+ = Err∗
− = Err∗

b. (roughly speaking, τ opt �
√

1/π)

A critical observation is that, changing τ only has an effect on β̂0 but not β̂. When

τ = τ opt, we have monotone trends of the errors, see summary in Table 1.

(ii) high imbalance regime, in the sense π ∝ d−a, ‖µ‖2 ∝ db, n ∝ dc+1 as d → ∞.
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Figure 4. Phase transition in high imbalance regime. 2-GMM simulation under different settings

of parameters (a, c) and τ = dr (b = 0.3). Left: minority accuracy is (i) high for any τ under high

signal, (ii) high for τ � d(a−b−c)/2 under moderate signal, but (iii) low for any τ under low signal.

Right: majority accuracy is close to 1 under high/moderate signal as long as τ is not too large.

Theorem (High imbalance). Consider 2-GMM as d → ∞. Suppose a − c < 1.
(i) High signal: a − c < b. If take 1 ≤ τd � db/2, then Err+ = o(1) and Err− = o(1).
(ii) Moderate signal: b < a − c < 2b. If da−b−c � τd � d(a−c)/2, then Err+ = o(1)

and Err− = o(1). If naively take τd � 1, then Err+ = 1 − o(1) and Err− = o(1).
(iii) Low signal: a − c > 2b. For any τd, we have Errb ≥ 1

2 − o(1).

Consequences for confidence estimation and calibration

Confidence: prediction probability, i.e., p̂(x) := σ(f̂ (x)) where σ(t) = (1 + e−t)−1.

Calibration: quantity uncertainty, measure faithfulness of prediction probabilities.

p̂0(x) := P(y = 1 | p̂(x)), p∗(x) := P(y = 1 | x). Some popularmiscalibrationmetrics:

calibration error CalErr(p̂) := E[(p̂(x) − p̂0(x))2], mean squared error MSE(p̂) :=
E[(1y=1 − p̂(x))2], and confidence estimation error ConfErr(p̂) := E[(p̂(x) − p∗(x))2].
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Figure 5. Reliability diagrams: imbalance worsens calibration. In 2-GMM simulations, we train

SVMs and obtain confidence p̂(x). For each p (x-axis), we calculate P(y = 1 | p̂(x) = p) (y-axis)
based on a test set. As imbalance increases (smaller π), the classifier becomes more miscalibrated.

Theoretical results: Err∗
+, Err∗

−, Err∗
b CalErr∗ MSE∗ ConfErr∗

imbalance ratio π ↑ ↓ ↓ ↓
signal strength ‖µ‖2 ↑ ↓ ↓ ↓
aspect ratio n/d → δ ↑ ↓ ↓ ↓ ↓

Table 1. Monotonicity of test errors and miscalibration metrics on model parameters.
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