

A statistical theory of overfitting for imbalanced classification

Jingyang Lyu* Kangjie Zhou† Yiqiao Zhong*

*Department of Statistics, University of Wisconsin–Madison

†Department of Statistics, Columbia University

Department of Statistics SCHOOL OF COMPUTER, DATA & INFORMATION SCIENCES UNIVERSITY OF WISCONSIN-MADISON

Collaborators

Kangjie Zhou, postdoc at Columbia U

Yiqiao Zhong, UW-Madison

Paper: https://arxiv.org/abs/2502.11323

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- **▶** Generalization and future work

Challenge 1: High dimensionality

High dimensional features are everywhere:

- Finetuning a classification layer in deep learning
- Linear probing, interpretability of LLMs
- Single-cell omics

Challenge 1: High dimensionality

	Low dimensions	High dimensions
Parameter estimation	$\left\langle \frac{\widehat{\boldsymbol{\beta}}}{\ \widehat{\boldsymbol{\beta}}\ }, \frac{\boldsymbol{\beta}}{\ \boldsymbol{\beta}\ } \right\rangle \approx 1$	$\left\langle \frac{\widehat{\boldsymbol{\beta}}}{\ \widehat{\boldsymbol{\beta}}\ }, \frac{\boldsymbol{\beta}}{\ \boldsymbol{\beta}\ } \right\rangle < 1$
Generalization	Train error $pprox$ Test error	Train error < Test error

Table: Qualitative comparison for linear classification, β is the slope parameter vector.

The advances of high-dimensional statistics in the past 15 years.

- El Karoui el al. (2013), Donoho and Montanari (2016), Sur and Candés (2019)
- Double descent and benign overfitting: Belkin et al. (2019), Bartlett el al. (2020)
- Many more . . .

Q: New angles for the (overfitting) effects of dimensionality?

Challenge 2: Data imbalance

Real-world datasets are generally **imbalanced**.

• Sentiment analysis.

Dataset	Tweets	#Negative	#Positive
Stanford Twitter Test Set (STS-Test) [9]	359	177	182
Sanders Dataset (Sanders) [17]	1224	654	570
Obama McCain Debate (OMD) [7]	1906	1196	710
Health Care Reform (HCR) [22]	1922	1381	541
Stanford Gold Standard (STS-Gold) [17]	2034	632	1402
Sentiment Strength Twitter Dataset (SSTD) [23]	2289	1037	1252
The Dialogue Earth Weather Dataset (WAB) [3]	5495	2580	2915
The Dialogue Earth Gas Prices Dataset (GASP) [3]	6285	5235	1050
Semeval Dataset (Semeval) [14]	7535	2186	5349

Figure: Twitter datasets used for sentiment analysis [Saif et al. 2015]

- Industrial fault detection (failures

 ≪ normal operations)
- Healthcare and medical diagnosis (rare disease/genetic markers, privacy issue)

Challenge 2: Data imbalance

- Minority classes have worse training and testing errors.
- The classical asymptotic theory or finite-sample analysis is inaccurate in high dimensions.
- The practice is heuristic-driven and ad hoc.
 - Re-sampling: oversampling the minority or under-sampling the majority
 - Re-weighting: assigning higher weights for minority classes
 - Synthetic data: SMOTE (2002), Mixup (2018)
 - Margin adjustment: popular in deep learning.

Q: How to quantify the impact of factors (imbalance ratio, SNR, dimension) on accuracy?

Goals of this talk

Goal 1. Provide a new angle of **characterizing overfitting** for imbalanced classification.

	Low dimensions	High dimensions
Parameter estimation	$\left\langle \frac{\widehat{\boldsymbol{\beta}}}{\ \widehat{\boldsymbol{\beta}}\ }, \frac{\boldsymbol{\beta}}{\ \boldsymbol{\beta}\ } \right\rangle \approx 1$	$\left\langle \frac{\widehat{\beta}}{\ \widehat{\beta}\ }, \frac{\beta}{\ \beta\ } \right\rangle < 1$
Generalization	Train error $pprox$ Test error	Train error $<$ Test error
Distribution of logits	1D projection of $P_{m{x}}$	Skewed/distorted 1D projection of $P_{m{x}}$

Goal 2. Quantify the **adverse effects** of overfitting, esp. for the minority class.

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- **▶** Generalization and future work

Binary classification

- Training data $(x_1, y_1), \ldots, (x_n, y_n) \stackrel{\text{i.i.d.}}{\sim} P_{x,y}$.
 - $-x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$
- Imbalance ratio: denote $\pi = \mathbb{P}(y_i = +1)$.
 - The classification is imbalanced if $\pi < 1/2$.

$$y_i = \begin{cases} +1 & \text{with prob} & \pi & \text{(minority)} \\ -1 & \text{with prob} \ 1 - \pi & \text{(majority)} \end{cases}$$

• Build a classifier based on $f: \mathbb{R}^d \to \mathbb{R}$. For a point x, the predicted label is

$$\widehat{y}(x) = \begin{cases} +1 & \text{if } f(x) > 0 \\ -1 & \text{if } f(x) \le 0 \end{cases}$$

Two linear classifiers

• We focus on two linear classifiers.

$$\begin{array}{ll} \text{(logistic regression)} & \underset{\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0 \in \mathbb{R}}{\operatorname{minimize}} & \frac{1}{n} \sum_{i=1}^n \ell \big(y_i (\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \big), \\ & \text{(SVM)} & \underset{\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0, \kappa \in \mathbb{R}}{\operatorname{maximize}} & \kappa, \\ & \text{subject to} & y_i (\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq \kappa, \quad \forall \, 1 \leq i \leq n, \\ & \|\boldsymbol{\beta}\|_2 \leq 1. \end{array}$$

• Connection (inductive bias): when training data is linear separable,

SVM = Max-margin classifier = Ridgeless logistic regression

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- **▶** Generalization and future work

Logits and empirical logit distribution

For any classifier $\widehat{y}(x) = 2\mathbb{1}\{\widehat{f}(x) > 0\} - 1$ (e.g., SVM, neural network, language model)

- Logit for point x: $\widehat{f}(x)$
- Margin: $\widehat{\kappa}_n = \min_{1 \leq i \leq n} y_i \widehat{f}(\boldsymbol{x}_i)$
 - When $\hat{\kappa}_n > 0$, the training set is **linearly separable**.

Definition (Empirical logit distribution, or ELD)

For any binary classifier $\widehat{y}(x)$ built on $\widehat{f}(x)$, the empirical logit distribution is defined as

$$\widehat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(y_i, \widehat{f}(\boldsymbol{x}_i))} \tag{2}$$

where δ_a denotes the delta measure supported at point a.

Empirical logit distribution v.s. testing logit distribution

Let $(x_{\text{test}}, y_{\text{test}}) \sim P_{x,y}$ be a new data point.

• Overfitting can be characterized by discrepancy between

$$\widehat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(y_i, \widehat{f}(\boldsymbol{x}_i))} \qquad \text{and} \qquad \widehat{\nu}_n^{\text{test}} = \text{Law}\left(y_{\text{test}}, \widehat{f}(\boldsymbol{x}_{\text{test}})\right)$$
empirical logit distribution
("training" logit distribution)

- Note: both $\widehat{\nu}_n$, $\widehat{\nu}_n^{\text{test}}$ are random measures.
 - Since \widehat{f} depends on training set $\{(x_1, y_1), \ldots, (x_n, y_n)\}$.

Empirical phenomenon: Simulation

Settings:

1. Generate a (linearly) separable training set from a Gaussian mixture model (GMM):

$$y_i = \left\{ egin{array}{ll} +1, & ext{w.p.} & \pi & ext{(minority)} \ -1, & ext{w.p.} & 1-\pi & ext{(majority)} \end{array}
ight., \qquad m{x}_i \,|\, y_i \sim \mathcal{N}(y_i m{\mu}, \mathbf{I}_d), \qquad i=1,2,\ldots,n.$$

2. Train a max-margin classifier (SVM): $\Longrightarrow \widehat{\beta}, \widehat{\beta}_0, \widehat{\kappa}$

$$\label{eq:local_problem} \begin{split} & \underset{\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0 \in \mathbb{R}, \kappa \in \mathbb{R}}{\text{maximize}} & \kappa, \\ & \text{subject to} & y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq \kappa, \quad \forall \, 1 \leq i \leq n, \\ & \|\boldsymbol{\beta}\|_2 \leq 1. \end{split}$$

3. Compare empirical / testing logit distribution for $\widehat{f}(x) = \langle x, \widehat{\beta} \rangle + \widehat{\beta}_0$.

Empirical phenomenon: Simulation

Figure: Empirical (training) and testing logit distribution for binary Gaussian mixture model

Empirical phenomenon: tubular data

RNA-seq ifnb dataset with logistic regression $(\pi = 0.2)$

0.00

Figure: Empirical (training) and testing logit distribution for single-cell dataset

logit

25

50

75

-50

-25

Empirical phenomenon: image data

ResNet-18 trained on CIFAR-10 $(\pi=0.1)$

Figure: Empirical (training) and testing logit distribution for CIFAR-10 dataset

Empirical phenomenon: text data

BERT(110M) trained on IMDb movie reviews $(\pi=0.02)$

Figure: Empirical (training) and testing logit distribution for IMDb dataset

Theoretical foundation

Consider GMM with asymptotic regime $n/d \to \delta \in (0, \infty)$.

- Recall $\widehat{\kappa} = \min_{1 \leq i \leq n} y_i(\langle \boldsymbol{x}_i, \widehat{\boldsymbol{\beta}} \rangle + \widehat{\beta}_0)$. Denote $\widehat{\rho} = \left\langle \frac{\widehat{\boldsymbol{\beta}}}{\|\widehat{\boldsymbol{\beta}}\|}, \frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|} \right\rangle$. $(\|\widehat{\boldsymbol{\beta}}\| = 1 \text{ when separable})$
- We may expect $(\widehat{\rho}, \widehat{\beta}_0, \widehat{\kappa})$ converge to some limit $(\rho^*, \beta_0^*, \kappa^*)$ as $n, d \to \infty$.

Let $(x_{\mathrm{test}}, y_{\mathrm{test}})$ be a new testing point, then

$$\begin{split} y_{\text{test}} \left(\langle \boldsymbol{x}_{\text{test}}, \widehat{\boldsymbol{\beta}} \rangle + \widehat{\beta}_0 \right) &= y_{\text{test}} \left\langle y_{\text{test}} \boldsymbol{\mu} + \mathcal{N}(\mathbf{0}, \mathbf{I}_d), \ \widehat{\boldsymbol{\beta}} \right\rangle + y_{\text{test}} \widehat{\beta}_0 \\ &= \widehat{\rho} \ \| \boldsymbol{\mu} \| + \left\langle \mathcal{N}(\mathbf{0}, \mathbf{I}_d), \widehat{\boldsymbol{\beta}} \right\rangle + y_{\text{test}} \widehat{\beta}_0 \\ &\approx \rho^* \| \boldsymbol{\mu} \| + G + Y \beta_0^*, \qquad \text{where } (Y, G) \sim P_y \times \mathcal{N}(0, 1). \end{split}$$

Theoretical foundation

For a testing point $(m{x}_{ ext{test}}, y_{ ext{test}})$,

$$y_{\text{test}}\left(\langle \boldsymbol{x}_{\text{test}}, \widehat{\boldsymbol{\beta}} \rangle + \widehat{\beta}_{0}\right) \approx \rho^{*} \|\boldsymbol{\mu}\| + G + Y \beta_{0}^{*}.$$
 $(\widehat{\nu}_{n}^{\text{test}})$

However, for a training point (x_i, y_i) ,

• There is a **distortion effect** on the distribution due to dependence between (x_i, y_i) and \widehat{f} .

$$y_i\left(\langle \boldsymbol{x}_i, \widehat{\boldsymbol{\beta}}\rangle + \widehat{\beta}_0\right) \approx \max\left\{\kappa^*, \rho^* \|\boldsymbol{\mu}\| + G + Y\beta_0^*\right\}.$$
 $(\widehat{\nu}_n)$

Key takeaway

Overfitting = "Truncation"

Theoretical foundation

Theorem (Separable regime, simplified ver.)

Consider GMM with asymptotic regime $n/d \to \delta \in (0, \infty)$.

(a) (Phase transition) There is a critical threshold $\delta_c = \delta_c(\|\mu\|, \pi)$, such that

$$\mathbb{P}\left\{ ext{training set is linearly separable} \right\}
ightarrow 1, \qquad \text{if } \delta < \delta_c.$$

(b) (Parameter convergence) If $\delta < \delta_c$, then $(\widehat{\rho}, \widehat{\beta}_0, \widehat{\kappa}) \stackrel{P}{\rightarrow} (\rho^*, \beta_0^*, \kappa^*)$, where $(\rho^*, \beta_0^*, \kappa^*)$ is the unique solution of the following variational optimization problem:

$$\begin{array}{ll} \underset{\rho \in [-1,1], \beta_0 \in \mathbb{R}, \kappa > 0, \xi \in \mathcal{L}^2}{\text{maximize}} & \kappa, \\ \text{subject to} & \rho \| \boldsymbol{\mu} \| + G + Y \beta_0 + \sqrt{1 - \rho^2} \boldsymbol{\xi} \geq \kappa, & \mathbb{E}[\boldsymbol{\xi}^2] \leq 1/\delta. \end{array}$$

(c) (ELD convergence) If $\delta < \delta_c$, denote $\nu^* = \max\{\kappa^*, \rho^* \|\boldsymbol{\mu}\| + G + Y\beta_0^*\}$. Then $W_2(\widehat{\nu}_n, \nu^*) \stackrel{\mathrm{p}}{\to} 0$.

Theoretical foundation: remarks

$$\begin{array}{ll} \underset{\beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R}, \kappa \in \mathbb{R}}{\operatorname{maximize}} & \kappa, \\ \operatorname{subject to} & \forall \, 1 \leq i \leq n \quad y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq \kappa, \qquad \|\boldsymbol{\beta}\|_2 \leq 1. \qquad \text{(A)} \\ \\ \underset{\rho \in [-1,1], \beta_0 \in \mathbb{R}, \kappa > 0, \xi \in \mathcal{L}^2}{\operatorname{maximize}} & \kappa, \\ \operatorname{subject to} & \rho \|\boldsymbol{\mu}\| + G + Y\beta_0 + \sqrt{1 - \rho^2} \boldsymbol{\xi} \geq \kappa, \qquad \mathbb{E}[\boldsymbol{\xi}^2] \leq 1/\delta. \quad \text{(B)} \end{array}$$

- In (B), it can be shown that $\sqrt{1-\rho^2}\,\xi = (\kappa-\rho\,\|\mu\|-G-Y\beta_0)_+$ $(t)_+ = \max\{0,t\}.$
 - \Rightarrow The random variable ξ represents the **overfitting effect** in high dimensions.
- In (B), $\beta_0^* < 0$. The mean of minority testing logits is *closer to margin* than majority.
 - ⇒ **Overfitting hurts minority** class more than majority.

Theoretical foundations: non-separable regime

Logistic regression: we obtained similar variational formulation in the limit.

Proximal operator instead of truncation characterizes overfitting effects.

Figure: Plots of proximal operator $x\mapsto \operatorname{prox}_{\lambda\ell}(x)$ where λ represents the strength of overfitting.

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- **▶** Generalization and future work

Rebalancing margin

Rebalancing margin is crucial in separable regime.

Consider margin-rebalanced SVM:

$$\label{eq:linear_problem} \begin{split} \underset{\boldsymbol{\beta} \in \mathbb{R}^d, \beta_0 \in \mathbb{R}, \kappa \in \mathbb{R}}{\text{maximize}} & & \kappa, \\ \text{subject to} & & y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq \boldsymbol{\tau} \kappa, \quad \forall \, i: y_i = +1 \\ & & y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq & \kappa, \quad \forall \, i: y_i = -1 \\ & & \|\boldsymbol{\beta}\|_2 \leq 1. \end{split}$$

Margin ratio: $\tau > 0$.

- **Note:** $\widehat{\beta}$ does not depend on τ .
- Question: what is the optimal τ ?

Classification errors

		Exact testing error		Asymptotic testing error	
	(minority error)	$\operatorname{Err}_{+} = \mathbb{P}(\widehat{y}(\boldsymbol{x}) \neq y \mid y = +1)$	\rightarrow	$\operatorname{Err}_{+}^{*} = \Phi(-\rho^{*} \ \boldsymbol{\mu}\ - \beta_{0}^{*})$	
	(majority error)	$\operatorname{Err}_{-} = \mathbb{P}(\widehat{y}(\boldsymbol{x}) \neq y \mid y = -1)$	\rightarrow	$\operatorname{Err}_{-}^{*} = \Phi(-\rho^{*} \ \boldsymbol{\mu}\ + \beta_{0}^{*})$	
X	(total error)	Err $= \mathbb{P}(\widehat{y}(\boldsymbol{x}) \neq y)$	\rightarrow	$\operatorname{Err}^* = \pi \operatorname{Err}^*_+ + (1 - \pi) \operatorname{Err}^*$	
✓	(balanced error)	$\mathrm{Err}_{\mathrm{b}} = \frac{1}{2}\mathrm{Err}_{+} + \frac{1}{2}\mathrm{Err}_{-}$	\rightarrow	$\mathrm{Err}_\mathrm{b}^* = \tfrac{1}{2}\mathrm{Err}_+^* + \tfrac{1}{2}\mathrm{Err}^*$	

Setting 1: proportional regime

Simulations

Setup: sample size n=100, dimension d=200. Run SVM, report errors over 100 runs.

Figure: Effects of margin rebalancing on test errors.

Setting 1: proportional regime

Simulations

Setup: sample size n=100, dimension d=200. Run SVM, report errors over 100 runs.

Figure: Impact of imbalance on test errors.

Setting 1: proportional regime

Theoretical foundation

Proposition (Proportional regime)

Define au^{opt} as the optimal margin ratio which minimizes the asymptotic balanced error

$$\tau^{\mathrm{opt}} := \mathop{\arg\min}_{\tau \geq 1} \mathrm{Err}_{\mathrm{b}}^* = \mathop{\arg\min}_{\tau \geq 1} \big\{ \Phi(-\left\|\boldsymbol{\mu}\right\|_2 \rho^* - \beta_0^*) + \Phi(-\left\|\boldsymbol{\mu}\right\|_2 \rho^* + \beta_0^*) \big\}.$$

(a) When $\tau=\tau^{\rm opt}$, we have $\beta_0^*=0$ and ${\rm Err}_+^*={\rm Err}_-^*={\rm Err}_{\rm b}^*$. In particular,

$$\tau^{\mathrm{opt}} = \frac{g_1^{-1} \left(\frac{\rho^*}{2\pi \, \|\boldsymbol{\mu}\|_2 \, \delta}\right) + \rho^* \, \|\boldsymbol{\mu}\|_2}{g_1^{-1} \left(\frac{\rho^*}{2(1-\pi) \, \|\boldsymbol{\mu}\|_2 \, \delta}\right) + \rho^* \, \|\boldsymbol{\mu}\|_2}, \qquad \text{where} \quad \begin{array}{c} g_1(t) = \mathbb{E}[(G+t)_+] \\ G \sim \mathcal{N}(0,1), \, (t)_+ = 0 \vee t \end{array}$$

- (b) When $\tau = \tau^{\mathrm{opt}}$, the testing error $\mathrm{Err}_{\mathrm{b}}^*$ is a decreasing function of $\|\mu\|_2$ (signal strength), δ (aspect ratio) and $\pi \in (0,1/2)$ (imbalance ratio).
 - When π is small, roughly speaking $\tau^{\rm opt} \simeq 1/\sqrt{\pi}$.

Setting 2: high imbalance

$$\pi \to 0$$
, $\|\mu\| \to \infty$, $\delta = n/d \to \infty$

• Motivation: in overparametrized model, the imbalance ratio (π) is vanishingly small relative to dimension (d) and sample size (n).

Under Gaussian mixture model, consider (a, b, c > 0)

$$\pi \approx d^{-a}, \qquad \|\boldsymbol{\mu}\|^2 \approx d^b, \qquad n \approx d^{c+1}.$$

- Such high imbalance dataset is always separable (with high probability).
- Feature distribution can be generalized to **sub-Gaussian**.

Setting 2: high imbalance: phase transition

Theorem (High imbalance regime, sub-Gaussian mixture model)

Suppose that a-c<1 (i.e. $n\pi\to\infty$).

(a) **High signal** (no need for margin rebalancing): a-c < b. If $1 \le \tau_d \ll d^{b/2}$, then

$$\operatorname{Err}_{+}^{*} = o(1), \qquad \operatorname{Err}_{-}^{*} = o(1).$$

(b) Moderate signal (margin rebalancing is crucial): b < a - c < 2b. If we choose $d^{a-b-c} \ll \tau_d \ll d^{(a-c)/2}$, then

$$\operatorname{Err}_{+}^{*} = o(1), \qquad \operatorname{Err}_{-}^{*} = o(1).$$

However, if we naively choose $\tau_d \approx 1$, then

$$\operatorname{Err}_{+}^{*} = 1 - o(1), \qquad \operatorname{Err}_{-}^{*} = o(1).$$

(c) Low signal (no better than random guess): a-c>2b. For any au_d , we have

$$\operatorname{Err}_{\mathrm{b}}^* \ge \frac{1}{2} - o(1).$$

Simulation: $\tau = d^r$

 $\pi \times d^{-a}$, $\|\mu\| \times d^{b/2}$, $n \times d^{c+1}$ (fix b = 0.3, c = 0.1, d = 2000)

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- **▶** Generalization and future work

Confidence and Calibration

Confidence (predicted probability)

- Multiclass classification: softmax
- Binary classification: sigmoid transformation $p(x) = 1/[1 + \exp(-f(x))]$.

Ideally, we expect $p(x) \approx \mathbb{P}(y = 1 \mid x)$. But the RHS is often intractable in high dim.

Definition (calibration)

A function $p: \mathcal{X} \to [0,1]$ is (perfectly) calibrated if

$$p(\boldsymbol{x}) = \mathbb{P}(y = 1 \mid \boldsymbol{p(x)})$$
 a.s.

Intuition: Given 1,000 predictions, each with confidence of 0.2, we expect that about 200 should be classified as positive.

- Most informative example: $p(x) = \mathbb{P}(y = 1 \mid x)$.
- Least informative example: $p(x) \equiv \mathbb{P}(y=1) = \pi$.

Calibration and other uncertainty measurements

Calibration error (CE).

$$CE(p) = \mathbb{E}\left[\left(\mathbb{P}(y=1 \mid p(\boldsymbol{x})) - p(\boldsymbol{x})\right)^{2}\right]$$

- Calibration itself does not guarantee a useful predictor, e.g., $p(x) = \pi$.
- The variance in y explained by prediction p(x) shouldn't be too small (**Sharpness**).

Mean squared error (MSE).

$$MSE(p) = \mathbb{E}\left[\left(\mathbb{1}\{y=1\} - p(\boldsymbol{x})\right)^2\right]$$

Confidence estimation error (ConfErr).

ConfErr
$$(p) := \mathbb{E}\left[\left(\mathbb{P}(y=1 \mid \boldsymbol{x}) - p(\boldsymbol{x})\right)^2\right].$$

Calibration: simulation

Setup: 2-GMM, n=1,000, d=500, $\pi=0.05$, $\|\boldsymbol{\mu}\|=1$, train SVM with $\tau=\tau^{\mathrm{opt}}$. Reliability diagrams: For each p (x-axis), calculate $\mathbb{P}(y=1\,|\,\widehat{p}(x)=p)$ (y-axis) on test set.

Figure: Imbalance worsens calibration.

Confidence and calibration: Theoretical foundations

Under proportional regime $n, d \to \infty$, $n/d \to \delta$, we show:

	$\operatorname{Err}_+^*, \operatorname{Err}^*, \operatorname{Err}_\mathrm{b}^*$	CE*	MSE*	ConfErr*
imbalance ratio $\pi \uparrow$	+			+
signal strength $\left\Vert oldsymbol{\mu} ight\Vert _{2}\uparrow$	↓	+	\downarrow	
aspect ratio $n/d \to \delta \uparrow$	↓	+	\downarrow	\

Table: Monotonicity of test errors and confidence/calibration metrics

Qualitatively, the effects of imbalance is similar to signal strength and effective sample size.

Takeaway message

Contents

- **▶** Introduction
- **▶** Settings
- ► Characterizing overfitting via empirical logit distribution
- ► Rebalancing margin is crucial
- **▶** Consequences for confidence estimation and calibration
- ► Generalization and future work

Generalization

- Non-isotropic covariance.
 - We obtained a variational form based on formal calculation.
 - Dependence on the covariance spike and direction is complicated.
- Multiclass classification.
 - Truncation for 2-dim Gaussian can be observed for empirical logit distribution.

Multiclass classification: CIFAR-10

Figure: Joint logit distribution

Multiclass classification: GMM

Figure: Joint logit distribution

ArXiv paper

GitHub page

References

- El Karoui, Noureddine, et al. "On robust regression with high-dimensional predictors."
 Proceedings of the National Academy of Sciences 110.36 (2013): 14557-14562.
- Donoho, David, and Andrea Montanari. "High dimensional robust m-estimation:
 Asymptotic variance via approximate message passing." Probability Theory and Related
 Fields 166 (2016): 935-969.
- Sur, Pragya, and Emmanuel J. Candès. "A modern maximum-likelihood theory for high-dimensional logistic regression." Proceedings of the National Academy of Sciences 116.29 (2019): 14516-14525.
- Belkin, Mikhail, et al. "Reconciling modern machine-learning practice and the classical bias-variance trade-off." Proceedings of the National Academy of Sciences 116.32 (2019): 15849-15854.
- Bartlett, Peter L., et al. "Benign overfitting in linear regression." Proceedings of the National Academy of Sciences 117.48 (2020): 30063-30070.

References

- Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal
 of artificial intelligence research 16 (2002): 321-357.
- Zhang, Hongyi, et al. "mixup: Beyond Empirical Risk Minimization." International Conference on Learning Representations. 2018.
- Cao, Kaidi, et al. "Learning imbalanced datasets with label-distribution-aware margin loss." Advances in neural information processing systems 32 (2019).
- Montanari, Andrea, and Kangjie Zhou. "Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks." arXiv preprint arXiv:2206.06526 (2022).