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Challenge 1: High dimensionality

High dimensional features are everywhere:

• Finetuning a classification layer in deep learning

• Linear probing, interpretability of LLMs

• Single-cell omics
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Challenge 1: High dimensionality

Low dimensions High dimensions

Parameter estimation
〈

β̂

∥β̂∥ ,
β

∥β∥

〉
≈ 1

〈
β̂

∥β̂∥ ,
β

∥β∥

〉
< 1

Generalization Train error ≈ Test error Train error < Test error

Table: Qualitative comparison for linear classification, β is the slope parameter vector.

The advances of high-dimensional statistics in the past 15 years.

• El Karoui el al. (2013), Donoho and Montanari (2016), Sur and Candés (2019)

• Double descent and benign overfitting: Belkin et al. (2019), Bartlett el al. (2020)

• Many more . . .

Q: New angles for the (overfitting) effects of dimensionality?
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Challenge 2: Data imbalance

Real-world datasets are generally imbalanced.

• Sentiment analysis.

Dataset Tweets #Negative #Positive #Unigrams
Stanford Twitter Test Set (STS-Test) [9] 359 177 182 1562
Sanders Dataset (Sanders) [17] 1224 654 570 3201
Obama McCain Debate (OMD) [7] 1906 1196 710 3964
Health Care Reform (HCR) [22] 1922 1381 541 5140
Stanford Gold Standard (STS-Gold) [17] 2034 632 1402 4694
Sentiment Strength Twitter Dataset (SSTD) [23] 2289 1037 1252 6849
The Dialogue Earth Weather Dataset (WAB) [3] 5495 2580 2915 7485
The Dialogue Earth Gas Prices Dataset (GASP) [3] 6285 5235 1050 8128
Semeval Dataset (Semeval) [14] 7535 2186 5349 15851

Negative Entities Positive Entities Neutral Entities
Total Number 13 29 16

Examples

Cancer Lakers Obama
Lebron James Katy Perry Sydney

Flu Omaha iPhone
Wii Taylor Swift Youtube

Dominique Wilkins Jasmine Tea Vegas
Table 2: Numbers of negative, positive and neutral entities in the STS-Gold Entity dataset along
with examples of 5 entities under each sentiment class.

The entity sentiment classifier we use in our evaluation is based on maximum
likelihood estimation (MLE). Specifically, we use tweets in the STS-Gold dataset to
estimate the conditional probability P (c|e) of an entity e assigned with a sentiment
class c ∈ {Positive,Negative} as: as P (c|e) = N(e, c)/N(e) where N(e, c) is the
frequency of an entity e in tweets assigned with a sentiment class c and N(e) is the
frequency of the entity e in the whole corpus.

We incorporate our SS-Pattern features and other baseline features (Section 4.3) into
the sentiment class estimation of e by using the following back-off strategy:

ĉ =

{
P (c|e) if N(e, c) 6= 0
P (c|f) if N(e, c) = 0

(1)

where f is the incorporated feature (e.g., the SS-Pattern of e) and P (c|f) is the condi-
tional probability of the feature f assigned with a sentiment class c and it can be also
estimated using MLE. The rationale behind the above back-off strategy is that some
entities might not occur in tweets of certain sentiment class, leading therefore, to zero
probabilities. In such cases we resort to the sentiment of the latent features associated
with these entities in the dataset.

The final sentiment of e can be derived from the ratioRe = P (c = Positive|e)/P (c =
Negative|e). In particular, the sentiment is neutral if Re is less than a threshold γ, oth-
erwise the sentiment is negative if Re < 1 or positive if Re > 1.

Figure: Twitter datasets used for sentiment analysis [Saif et al. 2015]

• Industrial fault detection (failures ≪ normal operations)

• Healthcare and medical diagnosis (rare disease/genetic markers, privacy issue)
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Challenge 2: Data imbalance

• Minority classes have worse training and testing errors.

• The classical asymptotic theory or finite-sample analysis is inaccurate in high dimensions.

• The practice is heuristic-driven and ad hoc.

— Re-sampling: oversampling the minority or under-sampling the majority

— Re-weighting: assigning higher weights for minority classes

— Synthetic data: SMOTE (2002), Mixup (2018)

— Margin adjustment: popular in deep learning.

Q: How to quantify the impact of factors

(imbalance ratio, SNR, dimension) on accuracy?

γ"
γ#

Figure 1: For binary classification with a linearly
separable classifier, the margin γi of the i-th class
is defined to be the the minimum distance of the
data in the i-th class to the decision boundary. We
show that the test error with the uniform label
distribution is bounded by a quantity that scales
in 1

γ1
√
n1

+ 1
γ2
√
n2

. As illustrated here, fixing the
direction of the decision boundary leads to a fixed
γ1 + γ2, but the trade-off between γ1, γ2 can be
optimized by shifting the decision boundary. As
derived in Section 3.1, the optimal trade-off is
γi ∝ n

−1/4
i where ni is the sample size of the

i-th class.

the frequent classes. Implementing this general idea requires a data-dependent or label-dependent
regularizer — which in contrast to standard `2 regularization depends not only on the weight matrices
but also on the labels — to differentiate frequent and minority classes. The theoretical understanding
of data-dependent regularizers is sparse (see [57, 43, 2] for a few recent works.)

We explore one of the simplest and most well-understood data-dependent properties: the margins
of the training examples. Encouraging a large margin can be viewed as regularization, as standard
generalization error bounds (e.g., [4, 59]) depend on the inverse of the minimum margin among all
the examples. Motivated by the question of generalization with respect to minority classes, we instead
study the minimum margin per class and obtain per-class and uniform-label test error bounds.2
Minimizing the obtained bounds gives an optimal trade-off between the margins of the classes. See
Figure 1 for an illustration in the binary classification case.

Inspired by the theory, we design a label-distribution-aware loss function that encourages the model
to have the optimal trade-off between per-class margins. The proposed loss extends the existing soft
margin loss [53] by encouraging the minority classes to have larger margins. As a label-dependent
regularization technique, our modified loss function is orthogonal to the re-weighting and re-sampling
approach. In fact, we also design a deferred re-balancing optimization procedure that allows us to
combine the re-weighting strategy with our loss (or other losses) in a more efficient way.

In summary, our main contributions are (i) we design a label-distribution-aware loss function to
encourage larger margins for minority classes, (ii) we propose a simple deferred re-balancing
optimization procedure to apply re-weighting more effectively, and (iii) our practical implementation
shows significant improvements on several benchmark vision tasks, such as artificially imbalanced
CIFAR and Tiny ImageNet [1], and the real-world large-scale imbalanced dataset iNaturalist’18 [52].

2 Related Works

Most existing algorithms for learning imbalanced datasets can be divided in to two categories:
re-sampling and re-weighting.

Re-sampling. There are two types of re-sampling techniques: over-sampling the minority classes
(see e.g., [46, 60, 5, 6] and references therein) and under-sampling the frequent classes (see, e.g.,
[17, 23, 5] and the references therein.) The downside of under-sampling is that it discards a large
portion of the data and thus is not feasible when data imbalance is extreme. Over-sampling is effective
in a lot of cases but can lead to over-fitting of the minority classes [9, 10]. Stronger data augmentation
for minority classes can help alleviate the over-fitting [9, 61].

Re-weighting. Cost-sensitive re-weighting assigns (adaptive) weights for different classes or even
different samples. The vanilla scheme re-weights classes proportionally to the inverse of their
frequency [21, 22, 55]. Re-weighting methods tend to make the optimization of deep models difficult
under extreme data imbalanced settings and large-scale scenarios [21, 22]. Cui et al. [10] observe

2The same technique can also be used for other test label distribution as long as the test label distribution is
known. See Section C.5 for some experimental results.

2

Cao et al. 2019
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Goals of this talk

Goal 1. Provide a new angle of characterizing overfitting for imbalanced classification.

Low dimensions High dimensions

Parameter estimation
〈

β̂

∥β̂∥ ,
β

∥β∥

〉
≈ 1

〈
β̂

∥β̂∥ ,
β

∥β∥

〉
< 1

Generalization Train error ≈ Test error Train error < Test error

Distribution of logits 1D projection of Px Skewed/distorted 1D projection of Px

Goal 2. Quantify the adverse effects of overfitting, esp. for the minority class.

dimensions v.s. sample size

degree of imbalance

signal strength

?
=⇒ test accuracy

uncertainty quantification
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Binary classification

• Training data (x1, y1), . . . , (xn, yn)
i.i.d.∼ Px,y.

— xi ∈ Rd, yi ∈ {+1,−1}

• Imbalance ratio: denote π = P(yi = +1).

— The classification is imbalanced if π < 1/2.

yi =

{
+1 with prob π (minority)

−1 with prob 1− π (majority)

• Build a classifier based on f : Rd → R.
For a point x, the predicted label is

ŷ(x) =

{
+1 if f(x) > 0

−1 if f(x) ≤ 0
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Two linear classifiers

• We focus on two linear classifiers.

(logistic regression) minimize
β∈Rd,β0∈R

1

n

n∑

i=1

ℓ
(
yi(⟨xi,β⟩+ β0)

)
,

(SVM) maximize
β∈Rd, β0,κ∈R

κ,

subject to yi(⟨xi,β⟩+ β0) ≥ κ, ∀ 1 ≤ i ≤ n,

∥β∥2 ≤ 1.

• Connection (inductive bias): when training data is linear separable,

SVM = Max-margin classifier = Ridgeless logistic regression
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Logits and empirical logit distribution

For any classifier ŷ(x) = 21{f̂(x) > 0} − 1 (e.g., SVM, neural network, language model)

• Logit for point x: f̂(x)

• Margin: κ̂n = min1≤i≤n yif̂(xi)

— When κ̂n > 0, the training set is linearly separable.

Definition (Empirical logit distribution, or ELD)

For any binary classifier ŷ(x) built on f̂(x), the empirical logit distribution is defined as

ν̂n =
1

n

n∑

i=1

δ(yi,f̂(xi))
(2)

where δa denotes the delta measure supported at point a.
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Empirical logit distribution v.s. testing logit distribution

Let (xtest, ytest) ∼ Px,y be a new data point.

• Overfitting can be characterized by discrepancy between

ν̂n =
1

n

n∑

i=1

δ(yi,f̂(xi))

︸ ︷︷ ︸
empirical logit distribution

(“training” logit distribution)

and ν̂testn = Law (ytest, f̂(xtest))

︸ ︷︷ ︸
testing logit distribution

• Note: both ν̂n, ν̂
test
n are random measures.

— Since f̂ depends on training set {(x1, y1), . . . , (xn, yn)}.
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Empirical phenomenon: Simulation

Settings:

1. Generate a (linearly) separable training set from a Gaussian mixture model (GMM):

yi =

{
+1, w.p. π (minority)

−1, w.p. 1− π (majority)
, xi | yi ∼ N (yiµ, Id), i = 1, 2, . . . , n.

2. Train a max-margin classifier (SVM): =⇒ β̂, β̂0, κ̂

maximize
β∈Rd,β0∈R,κ∈R

κ,

subject to yi(⟨xi,β⟩+ β0) ≥ κ, ∀ 1 ≤ i ≤ n,

∥β∥2 ≤ 1.

3. Compare empirical / testing logit distribution for f̂(x) = ⟨x, β̂⟩+ β̂0.
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Empirical phenomenon: Simulation

−6 −4 −2 0 2 4

logit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

margin

Minority ELD

Majority ELD

Minority TLD

Majority TLD

Decision boundary

Logit Distribution

Figure: Empirical (training) and testing logit distribution for binary Gaussian mixture model
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Empirical phenomenon: tubular data
RNA-seq ifnb dataset with logistic regression (π = 0.2)

−75 −50 −25 0 25 50 75
logit

0.00

0.02

0.04

0.06

0.08

RNAseq ifnb, class 5 vs class 4

Figure: Empirical (training) and testing logit distribution for single-cell dataset
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Empirical phenomenon: image data
ResNet-18 trained on CIFAR-10 (π = 0.1)

−300 −200 −100 0 100 200 300
logit

0.000

0.002

0.004

0.006

0.008

0.010

CIFAR-10, class 5 vs class 4

Figure: Empirical (training) and testing logit distribution for CIFAR-10 dataset
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Empirical phenomenon: text data
BERT(110M) trained on IMDb movie reviews (π = 0.02)

−400 −300 −200 −100 0 100 200
logit

0.00

0.01

0.02

0.03
Minority ELD

Majority ELD

Minority TLD

Majority TLD

Decision boundary

IMDb, positive vs negative

Figure: Empirical (training) and testing logit distribution for IMDb dataset
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Theoretical foundation

Consider GMM with asymptotic regime n/d→ δ ∈ (0,∞).

• Recall κ̂ = min
1≤i≤n

yi(⟨xi, β̂⟩+ β̂0). Denote ρ̂ =

〈
β̂

∥β̂∥
,

µ

∥µ∥

〉
. (∥β̂∥ = 1 when separable)

• We may expect (ρ̂, β̂0, κ̂) converge to some limit (ρ∗, β∗
0 , κ

∗) as n, d→∞.

Let (xtest, ytest) be a new testing point, then

ytest

(
⟨xtest, β̂⟩+ β̂0

)
= ytest

〈
ytestµ+N (0, Id), β̂

〉
+ ytestβ̂0

= ρ̂ ∥µ∥+
〈
N (0, Id), β̂

〉
+ ytestβ̂0

≈ ρ∗∥µ∥+G+ Y β∗
0 , where (Y,G) ∼ Py ×N (0, 1).
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Theoretical foundation

For a testing point (xtest, ytest),

ytest

(
⟨xtest, β̂⟩+ β̂0

)
≈ ρ∗∥µ∥+G+ Y β∗

0 . (ν̂testn )

However, for a training point (xi, yi),

• There is a distortion effect on the distribution due to dependence between (xi, yi) and f̂ .

yi

(
⟨xi, β̂⟩+ β̂0

)
≈ max

{
κ∗, ρ∗∥µ∥+G+ Y β∗

0

}
. (ν̂n)
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Key takeaway

Overfitting = “Truncation”

−6 −4 −2 0 2 4

logit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

margin

Minority ELD

Majority ELD

Minority TLD

Majority TLD

Decision boundary

Logit Distribution

y = +1 (minority)

f̂(xtest) ≈ N (ρ∗∥µ∥+ β∗
0 , 1)

f̂(xtrain) ≈ max{κ∗,N (ρ∗∥µ∥+ β∗
0 , 1)}

y = −1 (majority)

f̂(xtest) ≈ N (−ρ∗∥µ∥+ β∗
0 , 1)

f̂(xtrain) ≈ min{−κ∗,N (−ρ∗∥µ∥+ β∗
0 , 1)}
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Theoretical foundation

Theorem (Separable regime, simplified ver.)

Consider GMM with asymptotic regime n/d→ δ ∈ (0,∞).

(a) (Phase transition) There is a critical threshold δc = δc(∥µ∥, π), such that

P {training set is linearly separable} → 1, if δ < δc.

(b) (Parameter convergence) If δ < δc, then (ρ̂, β̂0, κ̂)
p−→ (ρ∗, β∗

0 , κ
∗), where (ρ∗, β∗

0 , κ
∗) is

the unique solution of the following variational optimization problem:

maximize
ρ∈[−1,1],β0∈R,κ>0,ξ∈L2

κ,

subject to ρ∥µ∥+G+ Y β0 +
√
1− ρ2ξ ≥ κ, E[ξ2] ≤ 1/δ.

(c) (ELD convergence) If δ < δc, denote ν∗ = max{κ∗, ρ∗∥µ∥+G+ Y β∗
0}. Then

W2(ν̂n, ν
∗)

p−→ 0.
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Theoretical foundation: remarks

maximize
β∈Rd,β0∈R,κ∈R

κ,

subject to ∀ 1 ≤ i ≤ n yi(⟨xi,β⟩+ β0) ≥ κ, ∥β∥2 ≤ 1. (A)

maximize
ρ∈[−1,1],β0∈R,κ>0,ξ∈L2

κ,

subject to ρ∥µ∥+G+ Y β0 +
√
1− ρ2ξ ≥ κ, E[ξ2] ≤ 1/δ. (B)

• In (B), it can be shown that
√
1− ρ2 ξ = (κ− ρ ∥µ∥ −G− Y β0)+ (t)+ = max{0, t}.

⇒ The random variable ξ represents the overfitting effect in high dimensions.

• In (B), β∗
0 < 0. The mean of minority testing logits is closer to margin than majority.

⇒ Overfitting hurts minority class more than majority.
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Theoretical foundations: non-separable regime

Logistic regression: we obtained similar variational formulation in the limit.

minimize
ρ∈[−1,1],R≥0,β0∈R,ξ∈L2

E
[
ℓ

(
ρ ∥µ∥2 R+RG+ Y β0 +R

√
1− ρ2ξ

)]
,

subject to E
[
ξ2
]
≤ 1/δ. proxλℓ(x) := argmin

t∈R

{
ℓ(t) + 1

2λ (t− x)2
}

Proximal operator instead of truncation characterizes overfitting effects.

−10 0 10 20

x

−10

0

10

20

λ = 1

−10 0 10 20

x

−10

0

10

20

λ = 5

−10 0 10 20

x

−10

0

10

20

λ = 100

−10 0 10 20

x

−10

0

10

20

λ = 10,000

Figure: Plots of proximal operator x 7→ proxλℓ(x) where λ represents the strength of overfitting.
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Rebalancing margin

Rebalancing margin is crucial in separable regime.

Consider margin-rebalanced SVM:

maximize
β∈Rd,β0∈R,κ∈R

κ,

subject to yi(⟨xi,β⟩+ β0) ≥ τκ, ∀ i : yi = +1,

yi(⟨xi,β⟩+ β0) ≥ κ, ∀ i : yi = −1,
∥β∥2 ≤ 1.

Margin ratio: τ > 0.

• Note: β̂ does not depend on τ .

• Question: what is the optimal τ?

τ κ̂

κ̂

〈x, β̂〉+
β̂
0 =

τ κ̂〈x, β̂〉+
β̂
0 = −

κ̂

〈x, β̂〉+
β̂
0 =

0

Minority class

(y = +1)

Majority class

(y = −1)

Positive support

vector(s)

Negative support

vector(s)
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Classification errors

Exact testing error Asymptotic testing error

(minority error) Err+ = P(ŷ(x) ̸= y | y = +1) → Err∗+ = Φ(−ρ∗∥µ∥ − β∗
0)

(majority error) Err− = P(ŷ(x) ̸= y | y = −1) → Err∗− = Φ(−ρ∗∥µ∥+ β∗
0)

✗ (total error) Err = P(ŷ(x) ̸= y) → Err∗ = πErr∗+ + (1− π)Err∗−

✓ (balanced error) Errb = 1
2Err+ + 1

2Err− → Err∗b = 1
2Err

∗
+ + 1

2Err
∗
−

28 / 47



Setting 1: proportional regime
Simulations

Setup: sample size n = 100, dimension d = 200. Run SVM, report errors over 100 runs.
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E
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Simulation

Figure: Effects of margin rebalancing on test errors.
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Setting 1: proportional regime
Simulations

Setup: sample size n = 100, dimension d = 200. Run SVM, report errors over 100 runs.
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Figure: Impact of imbalance on test errors.

30 / 47



Setting 1: proportional regime
Theoretical foundation

Proposition (Proportional regime)

Define τopt as the optimal margin ratio which minimizes the asymptotic balanced error

τopt := argmin
τ≥1

Err∗b = argmin
τ≥1

{
Φ(−∥µ∥2 ρ∗ − β∗

0) + Φ(−∥µ∥2 ρ∗ + β∗
0)
}
.

(a) When τ = τopt, we have β∗
0 = 0 and Err∗+ = Err∗− = Err∗b. In particular,

τopt =

g−1
1

(
ρ∗

2π ∥µ∥2 δ

)
+ ρ∗ ∥µ∥2

g−1
1

(
ρ∗

2(1− π) ∥µ∥2 δ

)
+ ρ∗ ∥µ∥2

, where
g1(t) = E[(G+ t)+]

G ∼ N (0, 1), (t)+ = 0 ∨ t

(b) When τ = τopt, the testing error Err∗b is a decreasing function of ∥µ∥2 (signal strength),

δ (aspect ratio) and π ∈ (0, 1/2) (imbalance ratio).

• When π is small, roughly speaking τopt ≍ 1/
√
π.
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Setting 2: high imbalance
π → 0, ∥µ∥ → ∞, δ = n/d → ∞

• Motivation: in overparametrized model, the imbalance ratio (π) is vanishingly small

relative to dimension (d) and sample size (n).

Under Gaussian mixture model, consider (a, b, c > 0)

π ≍ d−a, ∥µ∥2 ≍ db, n ≍ dc+1.

• Such high imbalance dataset is always separable (with high probability).

• Feature distribution can be generalized to sub-Gaussian.
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Setting 2: high imbalance: phase transition

Theorem (High imbalance regime, sub-Gaussian mixture model)

Suppose that a− c < 1 (i.e. nπ →∞).

(a) High signal (no need for margin rebalancing): a− c < b . If 1 ≤ τd ≪ db/2, then

Err∗+ = o(1), Err∗− = o(1).

(b) Moderate signal (margin rebalancing is crucial): b < a− c < 2b . If we choose

da−b−c ≪ τd ≪ d(a−c)/2, then

Err∗+ = o(1), Err∗− = o(1).

However, if we naively choose τd ≍ 1, then

Err∗+ = 1− o(1), Err∗− = o(1).

(c) Low signal (no better than random guess): a− c > 2b . For any τd, we have

Err∗b ≥
1

2
− o(1).
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Simulation: τ = dr
π ≍ d−a, ∥µ∥ ≍ db/2, n ≍ dc+1 (fix b = 0.3, c = 0.1, d = 2000)
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Confidence and Calibration

Confidence (predicted probability)

• Multiclass classification: softmax

• Binary classification: sigmoid transformation p(x) = 1/
[
1 + exp

(
−f(x)

)]
.

Ideally, we expect p(x) ≈ P(y = 1 |x). But the RHS is often intractable in high dim.

Definition (calibration)

A function p : X → [0, 1] is (perfectly) calibrated if

p(x) = P(y = 1 | p(x)) a.s.

Intuition: Given 1,000 predictions, each with confidence of 0.2, we expect that about 200

should be classified as positive.

• Most informative example: p(x) = P(y = 1 |x).
• Least informative example: p(x) ≡ P(y = 1) = π.
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Calibration and other uncertainty measurements

Calibration error (CE).

CE(p) = E
[(

P
(
y = 1 | p(x)

)
− p(x)

)2
]

• Calibration itself does not guarantee a useful predictor, e.g., p(x) = π.

• The variance in y explained by prediction p(x) shouldn’t be too small (Sharpness).

Mean squared error (MSE).

MSE(p) = E
[(
1{y = 1} − p(x)

)2]

Confidence estimation error (ConfErr).

ConfErr(p) := E
[(
P(y = 1 |x)− p(x)

)2]
.
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Calibration: simulation

Setup: 2-GMM, n = 1, 000, d = 500, π = 0.05, ∥µ∥ = 1, train SVM with τ = τopt.

Reliability diagrams: For each p (x-axis), calculate P(y = 1 | p̂(x) = p) (y-axis) on test set.
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Figure: Imbalance worsens calibration.
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Confidence and calibration: Theoretical foundations

Under proportional regime n, d→∞, n/d→ δ, we show:

Err∗+,Err
∗
−,Err

∗
b CE∗ MSE∗ ConfErr∗

imbalance ratio π ↑ ↓ ↓ ↓
signal strength ∥µ∥2 ↑ ↓ ↓ ↓
aspect ratio n/d→ δ ↑ ↓ ↓ ↓ ↓

Table: Monotonicity of test errors and confidence/calibration metrics

Qualitatively, the effects of imbalance is similar to

signal strength and effective sample size.
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Takeaway message

increasing dimension (δ = n
d ↓)

more severe imbalance (π ↓)
low signal strength (∥µ∥ ↓)

=⇒ More severe

overfitting
=⇒ test accuracy ↓

poor calibrated
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Generalization

• Non-isotropic covariance.

— We obtained a variational form based on formal calculation.

— Dependence on the covariance spike and direction is complicated.

• Multiclass classification.

— Truncation for 2-dim Gaussian can be observed for empirical logit distribution.
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Multiclass classification: CIFAR-10
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Multiclass classification: GMM
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Thank you for listening.

ArXiv paper GitHub page
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